Homework 5

Problem (8 points). The continuity and momentum conservation equations for cold dark matter in an expanding universe with metric perturbations are

$$\frac{\partial \rho_c}{\partial t} + \frac{1}{a} \nabla \cdot (\rho_c \mathbf{u}_c) + 3(H + \dot{\phi})\rho_c = 0, \tag{1}$$

$$\frac{\partial(\rho_c \boldsymbol{u}_c)}{\partial t} + 4H\rho_c \boldsymbol{u}_c + \frac{1}{a}\rho_c \nabla \psi = 0.$$
 (2)

i): expressing the density as $\rho_c = \bar{\rho}_c(1 + \delta_c)$ and keeping only the first-order terms $(\delta_c, u_c, \phi, \psi)$, show¹ that the corresponding first-order equations are

$$\frac{\partial \delta_c}{\partial t} + \frac{1}{a} \nabla \cdot (\bar{\rho} \boldsymbol{u}) + 3\dot{\phi} = 0, \tag{3}$$

$$\frac{\partial \boldsymbol{u}_c}{\partial t} + H\boldsymbol{u}_c + \frac{1}{a}\boldsymbol{\nabla}\psi = 0. \tag{4}$$

In a matter-dominated universe, in the limit of small scales (compared to 1/(aH)), and assuming no anisotropic stress ($\Theta_2 = 0$) the time-time component of Einstein equations becomes:

$$\nabla^2 \psi \approx 4\pi G a^2 \bar{\rho_c} \delta_c. \tag{5}$$

Furthermore, terms dependent on ϕ in Equation (3) can be neglected.

ii): Following a similar approach to that of HW4, obtain the following differential equation

$$\frac{\partial^2 \delta_c}{\partial t^2} + 2H \frac{\partial \delta_c}{\partial t} - 4\pi G \bar{\rho}_c \delta_c = 0. \tag{6}$$

iii): Show that, in a matter-dominated universe, the equation above is equivalent to

$$\frac{\partial^2 \delta_c}{\partial t^2} + \frac{4}{3t} \frac{\partial \delta_c}{\partial t} - \frac{2}{3t^2} \delta_c = 0. \tag{7}$$

iv): Look for solutions of the form $\delta_c(t) \propto t^p$ to the above differential equation. Discuss the solutions.

First derive the zero-order equation and use it to simplify the first-order one.